skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Zhengming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The mechanical properties of materials are fundamentally determined by the behavior of atomic bonds under stress. Probing bond behavior during deformation, however, is highly challenging, particularly for materials with complex chemical compositions and/or atomic structures, such as metallic glasses (MGs). As a result, a significant gap exists in the current understanding of the mechanical properties of MGs in relation to the atomic bond behavior and how this relationship is influenced by metallurgical factors (e.g., alloy composition, processing conditions). Here, we present our study of the compositional effects on the tensile behavior of atomic bonds in Cu93−xZrxAl7 (x = 40, 50, 60 at.%) MGs using large-scale molecular dynamics (MD) simulations and statistical analysis. Specifically, we examine the populations (fractions), mean bond lengths, mean bond z-lengths, and mean bond z-strains of the different bond types before and during tensile loading (in the z-direction), and we compare these quantities across the different alloy compositions. Among our key findings, we show that increasing the Zr content in the alloy composition leads to shortened Zr-Zr, Al-Cu, Al-Zr, and Cu-Zr bonds and elongated Cu-Cu bonds, as evidenced by their mean bond lengths. During deformation, the shorter Zr-Zr bonds and longer Cu-Cu bonds in the higher-Zr-content alloys, compared with those in the x = 40 alloy, appear stronger (more elastic stretching in the z-direction) and weaker (less z-stretching), respectively, consistent with general expectations. In contrast, the Al-Cu, Al-Zr, and Cu-Zr bonds in the higher-Zr-content alloys appear weaker in the elastic regime, despite their shortened mean bond lengths. This apparent paradox can be reconciled by considering the fractions of these bonds associated with icosahedral clusters, which are known to be more resistant to deformation than the rest of the glassy structure. We also discuss how the compositional effects on the bond behavior relate to variations in the overall stress–strain behavior of the different alloys. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Multicomponent metallic glasses (MGs) are a fascinating class of advanced alloys known for their exceptional properties such as limit-approaching strength, high hardness and corrosion resistance, and near-net-shape castability. One important question regarding these materials that remains unanswered is how the different elements and atomic bonds within them control their strength and deformability. Here, we present a detailed visual and statistical analysis of the behaviors of various elements and atomic bonds in the Zr47Cu46Al7 (at%) MG during a uniaxial tensile test (in the z-direction) simulated using molecular dynamics. Specifically, we investigate the identities of atoms undergoing significant shear strain, and the averaged bond lengths, projected z-lengths, and z-angles (angles with respect to the z-direction) of all the atomic bonds as functions of increasing strain. We show that, prior to yielding, the Zr element and the intermediate (Zr-Zr, Cu-Al) and stronger (Zr-Al, Zr-Cu) bonds dominate the elastic deformation and strength, while the Cu and Al elements and the weaker Al-Al and Cu-Cu bonds contribute more to the highly localized shear transformation. The significant reconstruction, as signified by the cessation of bond-length increment and bond-angle decrement, of the intermediate and the stronger bonds triggers yielding of the material. After yielding, all the elements and bonds participate in the plastic deformation while the stronger bonds contribute more to the residual strength and the ultimate (fracture) strain. The results provide new insights into the atomic mechanisms underlying the mechanical behavior of multicomponent MGs, and may assist in the future design of MG compositions towards better combination of strength and deformability. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. Titanium-based metallic glasses (TBMGs) are attracting broad interest due to their simultaneous light weight, superhigh strength, and specific strength, exceptional wear- and corrosion-resistance and biocompatibility, desirable for electronic, biomedical, and aerospace applications. However, the glass-forming ability (GFA) of TBMGs, except some containing significant amount of toxic (Be) or precious (Pd, Ag) elements, is disappointingly low, as manifested by a critical casting diameter (dc) not more than 6 mm, which significantly restricts their manufacturing and applications. Here, we report our discovery of a series of TBMGs in the (TiZrHf)x(CuNi)y(SnSi)z pseudo-ternary system. These alloys possess an exceptionally large dc, reaching up to 12 mm, doubling the current record for Be and precious-metal free TBMGs. Moreover, these alloys exhibit a low density (7.0–7.3 g/cm3), high fracture-strength (up to ∼2700 MPa), high specific fracture-strength (up to ∼370 N m g−1), and even good plasticity with a plastic strain of up to 9.4% upon compression. They also possess high activation energy for crystallization and high atomic packing efficiency, which provide an initial physical account for their exceptional GFA and manufacturability. 
    more » « less
  4. Understanding crystallization mechanisms in nano-sized metallic glasses (MGs) is important to the manufacturing and application of these new nanomaterials that possess a unique combination of structural and functional properties. Due to the two-dimensional projections and limited spatial and/or temporal resolutions in experiments, significant questions (e.g., whether nucleation takes place on the free surface or in a near-surface layer) regarding this subject remain under debate. Here, we address these outstanding questions using molecular dynamics simulations of crystallization in MG nanorods together with atomistic visualization and data analysis. We show that nucleation in the nano-sized MGs predominantly takes place on the surface by converting the high-energy liquid surface to a lower-energy crystal surface (the most close-packed atomic plane). This is true for all the nanorods with different diameters studied. On the other hand, the apparent growth mode (inward/radial, lateral or longitudinal) and the resulting grain structure are more dependent on the nanorod diameter. For a relatively big diameter of the nanorod, the overall growth rate does not differ much among the three directions and the resulting grains are approximately semispherical. For small diameters, grains appear to grow more in longitudinal direction and some grains may form relatively long single-crystal segments along the length of the nanorod. The reasons for the difference are discussed. The study provides direct atomistic insights into the crystallization mechanisms in nano-sized MGs, which can facilitate the manufacturing and application of these new advanced materials. 
    more » « less